d | ρ | Label | ID | ||
---|---|---|---|---|---|
S3xC23xC4 | 96 | S3xC2^3xC4 | 192,1511 |
extension | φ:Q→Out N | d | ρ | Label | ID |
---|---|---|---|---|---|
(S3xC22xC4):1C2 = C2xC12:D4 | φ: C2/C1 → C2 ⊆ Out S3xC22xC4 | 96 | (S3xC2^2xC4):1C2 | 192,1065 | |
(S3xC22xC4):2C2 = C42:10D6 | φ: C2/C1 → C2 ⊆ Out S3xC22xC4 | 48 | (S3xC2^2xC4):2C2 | 192,1083 | |
(S3xC22xC4):3C2 = S3xC4:D4 | φ: C2/C1 → C2 ⊆ Out S3xC22xC4 | 48 | (S3xC2^2xC4):3C2 | 192,1163 | |
(S3xC22xC4):4C2 = C4:C4:21D6 | φ: C2/C1 → C2 ⊆ Out S3xC22xC4 | 48 | (S3xC2^2xC4):4C2 | 192,1165 | |
(S3xC22xC4):5C2 = C4:C4:26D6 | φ: C2/C1 → C2 ⊆ Out S3xC22xC4 | 48 | (S3xC2^2xC4):5C2 | 192,1186 | |
(S3xC22xC4):6C2 = C2xD6:3D4 | φ: C2/C1 → C2 ⊆ Out S3xC22xC4 | 96 | (S3xC2^2xC4):6C2 | 192,1359 | |
(S3xC22xC4):7C2 = (C2xD4):43D6 | φ: C2/C1 → C2 ⊆ Out S3xC22xC4 | 48 | (S3xC2^2xC4):7C2 | 192,1387 | |
(S3xC22xC4):8C2 = C22xS3xD4 | φ: C2/C1 → C2 ⊆ Out S3xC22xC4 | 48 | (S3xC2^2xC4):8C2 | 192,1514 | |
(S3xC22xC4):9C2 = C22xD4:2S3 | φ: C2/C1 → C2 ⊆ Out S3xC22xC4 | 96 | (S3xC2^2xC4):9C2 | 192,1515 | |
(S3xC22xC4):10C2 = C22xQ8:3S3 | φ: C2/C1 → C2 ⊆ Out S3xC22xC4 | 96 | (S3xC2^2xC4):10C2 | 192,1518 | |
(S3xC22xC4):11C2 = C2xS3xC4oD4 | φ: C2/C1 → C2 ⊆ Out S3xC22xC4 | 48 | (S3xC2^2xC4):11C2 | 192,1520 | |
(S3xC22xC4):12C2 = (C2xC4):9D12 | φ: C2/C1 → C2 ⊆ Out S3xC22xC4 | 96 | (S3xC2^2xC4):12C2 | 192,224 | |
(S3xC22xC4):13C2 = C24.23D6 | φ: C2/C1 → C2 ⊆ Out S3xC22xC4 | 96 | (S3xC2^2xC4):13C2 | 192,515 | |
(S3xC22xC4):14C2 = C2xC4xD12 | φ: C2/C1 → C2 ⊆ Out S3xC22xC4 | 96 | (S3xC2^2xC4):14C2 | 192,1032 | |
(S3xC22xC4):15C2 = C2xS3xC22:C4 | φ: C2/C1 → C2 ⊆ Out S3xC22xC4 | 48 | (S3xC2^2xC4):15C2 | 192,1043 | |
(S3xC22xC4):16C2 = C2xDic3:4D4 | φ: C2/C1 → C2 ⊆ Out S3xC22xC4 | 96 | (S3xC2^2xC4):16C2 | 192,1044 | |
(S3xC22xC4):17C2 = C2xC23.9D6 | φ: C2/C1 → C2 ⊆ Out S3xC22xC4 | 96 | (S3xC2^2xC4):17C2 | 192,1047 | |
(S3xC22xC4):18C2 = C2xDic3:D4 | φ: C2/C1 → C2 ⊆ Out S3xC22xC4 | 96 | (S3xC2^2xC4):18C2 | 192,1048 | |
(S3xC22xC4):19C2 = C2xDic3:5D4 | φ: C2/C1 → C2 ⊆ Out S3xC22xC4 | 96 | (S3xC2^2xC4):19C2 | 192,1062 | |
(S3xC22xC4):20C2 = C2xD6.D4 | φ: C2/C1 → C2 ⊆ Out S3xC22xC4 | 96 | (S3xC2^2xC4):20C2 | 192,1064 | |
(S3xC22xC4):21C2 = C4xS3xD4 | φ: C2/C1 → C2 ⊆ Out S3xC22xC4 | 48 | (S3xC2^2xC4):21C2 | 192,1103 | |
(S3xC22xC4):22C2 = C42:14D6 | φ: C2/C1 → C2 ⊆ Out S3xC22xC4 | 48 | (S3xC2^2xC4):22C2 | 192,1106 | |
(S3xC22xC4):23C2 = S3xC22.D4 | φ: C2/C1 → C2 ⊆ Out S3xC22xC4 | 48 | (S3xC2^2xC4):23C2 | 192,1211 | |
(S3xC22xC4):24C2 = C4:C4:28D6 | φ: C2/C1 → C2 ⊆ Out S3xC22xC4 | 48 | (S3xC2^2xC4):24C2 | 192,1215 | |
(S3xC22xC4):25C2 = C2xC4xC3:D4 | φ: C2/C1 → C2 ⊆ Out S3xC22xC4 | 96 | (S3xC2^2xC4):25C2 | 192,1347 | |
(S3xC22xC4):26C2 = C22xC4oD12 | φ: C2/C1 → C2 ⊆ Out S3xC22xC4 | 96 | (S3xC2^2xC4):26C2 | 192,1513 |
extension | φ:Q→Out N | d | ρ | Label | ID |
---|---|---|---|---|---|
(S3xC22xC4).1C2 = C4:(D6:C4) | φ: C2/C1 → C2 ⊆ Out S3xC22xC4 | 96 | (S3xC2^2xC4).1C2 | 192,546 | |
(S3xC22xC4).2C2 = D6:6M4(2) | φ: C2/C1 → C2 ⊆ Out S3xC22xC4 | 48 | (S3xC2^2xC4).2C2 | 192,685 | |
(S3xC22xC4).3C2 = C2xS3xC4:C4 | φ: C2/C1 → C2 ⊆ Out S3xC22xC4 | 96 | (S3xC2^2xC4).3C2 | 192,1060 | |
(S3xC22xC4).4C2 = C2xC4:C4:7S3 | φ: C2/C1 → C2 ⊆ Out S3xC22xC4 | 96 | (S3xC2^2xC4).4C2 | 192,1061 | |
(S3xC22xC4).5C2 = C2xC4.D12 | φ: C2/C1 → C2 ⊆ Out S3xC22xC4 | 96 | (S3xC2^2xC4).5C2 | 192,1068 | |
(S3xC22xC4).6C2 = S3xC42:C2 | φ: C2/C1 → C2 ⊆ Out S3xC22xC4 | 48 | (S3xC2^2xC4).6C2 | 192,1079 | |
(S3xC22xC4).7C2 = S3xC22:Q8 | φ: C2/C1 → C2 ⊆ Out S3xC22xC4 | 48 | (S3xC2^2xC4).7C2 | 192,1185 | |
(S3xC22xC4).8C2 = C2xS3xM4(2) | φ: C2/C1 → C2 ⊆ Out S3xC22xC4 | 48 | (S3xC2^2xC4).8C2 | 192,1302 | |
(S3xC22xC4).9C2 = C2xD6:3Q8 | φ: C2/C1 → C2 ⊆ Out S3xC22xC4 | 96 | (S3xC2^2xC4).9C2 | 192,1372 | |
(S3xC22xC4).10C2 = C22xS3xQ8 | φ: C2/C1 → C2 ⊆ Out S3xC22xC4 | 96 | (S3xC2^2xC4).10C2 | 192,1517 | |
(S3xC22xC4).11C2 = S3xC2.C42 | φ: C2/C1 → C2 ⊆ Out S3xC22xC4 | 96 | (S3xC2^2xC4).11C2 | 192,222 | |
(S3xC22xC4).12C2 = C22.58(S3xD4) | φ: C2/C1 → C2 ⊆ Out S3xC22xC4 | 96 | (S3xC2^2xC4).12C2 | 192,223 | |
(S3xC22xC4).13C2 = D6:C42 | φ: C2/C1 → C2 ⊆ Out S3xC22xC4 | 96 | (S3xC2^2xC4).13C2 | 192,225 | |
(S3xC22xC4).14C2 = D6:(C4:C4) | φ: C2/C1 → C2 ⊆ Out S3xC22xC4 | 96 | (S3xC2^2xC4).14C2 | 192,226 | |
(S3xC22xC4).15C2 = D6:C4:C4 | φ: C2/C1 → C2 ⊆ Out S3xC22xC4 | 96 | (S3xC2^2xC4).15C2 | 192,227 | |
(S3xC22xC4).16C2 = S3xC22:C8 | φ: C2/C1 → C2 ⊆ Out S3xC22xC4 | 48 | (S3xC2^2xC4).16C2 | 192,283 | |
(S3xC22xC4).17C2 = D6:M4(2) | φ: C2/C1 → C2 ⊆ Out S3xC22xC4 | 48 | (S3xC2^2xC4).17C2 | 192,285 | |
(S3xC22xC4).18C2 = C4xD6:C4 | φ: C2/C1 → C2 ⊆ Out S3xC22xC4 | 96 | (S3xC2^2xC4).18C2 | 192,497 | |
(S3xC22xC4).19C2 = D6:C4:6C4 | φ: C2/C1 → C2 ⊆ Out S3xC22xC4 | 96 | (S3xC2^2xC4).19C2 | 192,548 | |
(S3xC22xC4).20C2 = C2xD6:C8 | φ: C2/C1 → C2 ⊆ Out S3xC22xC4 | 96 | (S3xC2^2xC4).20C2 | 192,667 | |
(S3xC22xC4).21C2 = C2xC42:2S3 | φ: C2/C1 → C2 ⊆ Out S3xC22xC4 | 96 | (S3xC2^2xC4).21C2 | 192,1031 | |
(S3xC22xC4).22C2 = C2xD6:Q8 | φ: C2/C1 → C2 ⊆ Out S3xC22xC4 | 96 | (S3xC2^2xC4).22C2 | 192,1067 | |
(S3xC22xC4).23C2 = C22xC8:S3 | φ: C2/C1 → C2 ⊆ Out S3xC22xC4 | 96 | (S3xC2^2xC4).23C2 | 192,1296 | |
(S3xC22xC4).24C2 = S3xC2xC42 | φ: trivial image | 96 | (S3xC2^2xC4).24C2 | 192,1030 | |
(S3xC22xC4).25C2 = S3xC22xC8 | φ: trivial image | 96 | (S3xC2^2xC4).25C2 | 192,1295 |